

Communication

Enantioselective [2 + 2] Cycloaddition of Unactivated Alkenes with -Acyloxyacroleins Catalyzed by Chiral Organoammonium Salts

Kazuaki Ishihara, and Kazuhiko Nakano

J. Am. Chem. Soc., **2007**, 129 (29), 8930-8931• DOI: 10.1021/ja073435w • Publication Date (Web): 04 July 2007 Downloaded from http://pubs.acs.org on February 16, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 7 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 07/04/2007

Enantioselective [2 + 2] Cycloaddition of Unactivated Alkenes with α-Acyloxyacroleins Catalyzed by Chiral Organoammonium Salts

Kazuaki Ishihara* and Kazuhiko Nakano

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan

Received May 15, 2007; E-mail: ishihara@cc.nagoya-u.ac.jp

We have recently developed an enantioselective Diels-Alder reaction of dienes with α -acyloxyacroleins (3) induced by chiral organoammonium salts such as H-L-Phe-L-Leu-N(CH₂CH₂)₂reduced triamine (1)•2.75C₆F₅SO₃H^{1a} and (S)-1,1'-binaphthyl-2,2'diamine (2)•1.9HNTf2^{1b,c} (Scheme 1).^{2,3} While examining various asymmetric reactions using these organosalt catalysts, we found that 1-2.6HNTf₂ catalyzes the enantioselective [2 + 2] cycloaddition reaction of unactivated alkenes 4 with 3, to give optically active 1-acyloxycyclobutanecarbaldehydes 5. To the best of our knowledge, there are only three previous examples of catalytic enantioselective [2 + 2] cycloaddition reactions for the synthesis of optically active cyclobutanes or cyclobutenes.⁴⁻⁷ The previous methods were limited to the [2 + 2] cycloaddition of highly nucleophilic alkenyl or alkynyl sulfides^{5,6} and sterically demanding alkenes such as norbornene derivatives.7 We report here the first example of the organocatalytic enantioselective [2 + 2] cycloaddition reaction of 4 with 3 to give optically active 5 and subsequent ring expansion to give optically active 2-hydroxycyclopentanone derivatives 6 and 7.

First, the [2 + 2] cycloaddition reaction of 2,4-dimethylpent-2ene (4a) with α -benzoyloxyacrolein (3a) was examined in the presence of chiral amines (10 mol %) and Brønsted acids (x mol %) in nitroethane (Table 1). Although 1•2.75C₆F₅SO₃H and 1.2.75TfOH were inert at 0 °C (entries 1 and 2), more acidic 2.1.9HNTf₂ was found to catalyze the cycloaddition even at -78°C (entry 3). However, the enantioselectivity was moderate (64% ee for major diastereomeric cycloadduct 5aa). Fortunately, the enantioselectivity was increased to 80% ee with the use of 1.2.6HNTf₂ at 0 °C. Moreover, the enantioselectivity was increased to 85% ee when the reaction temperature was lowered to -20 °C (entry 5). The absolute and relative stereochemistry of 5aa, which was obtained in the experiments shown in Table 1, was determined to be a (1S,3R)-anti configuration based on the X-ray crystal analysis of (1'S)-camphanyl ester 8 derived from 5aa (see Supporting Information).

Next, several acyloxy groups of 3 were screened for the enantioselective [2 + 2] cycloaddition of **4a** in nitroethane at room temperature in the presence of 10 mol % of 1•2.6HNTf₂ (Table 2). The result indicated that the electronic and steric effects of the acyloxy group of 3 did not greatly influence the enantioselectivity or reactivity. Nevertheless, when 2,6-difluorobenzoyloxyacrolein (3f) was used in place of 3a, the ee value was slightly improved from 73 to 84% (entries 1 and 5).

To explore the generality and scope of the 1.2.6HNTf2-induced enantioselective [2 + 2] cycloaddition with 3, structurally diverse alkenes 4 were examined (Table 3). In most cases, cycloadducts 5 were obtained in slightly better yield when the reaction was performed in nitropropane, which is less polar than nitroethane. Cyclic and acyclic trialkylethenes 4a-f were reacted with α -(fluorobenzoyloxy)acroleins 3e-g to give 5 in moderate to good yield with high ee. In contrast, 1,1- and 1,2-dialkylethenes showed no

Scheme 1. Enantioselective Diels-Alder (ref 1) and [2 + 2]Cycloaddition Reactions with 3

Table 1. Enantioselective [2 + 2] Cycloaddition of 4a with 3a^a

BzO、_CHO

1 or 2 (10 mol%)

OBz

\searrow	BZO CHO		HX (x mol%)		СНО		
i-Pr 3a		EtNO ₂		<i>i</i> -Pr ^{```3} 5aa			
		conditions	yield		ee ^b		
entry	amine•HX	(°C, h)	(%)	syn:anti	(%)		
1	1•2.75C ₆ F ₅ SO ₃ H	0, 24	N.R.				
2	1•2.75TfOH	0,24	N.R.				
3	2 •1.9HNTf ₂	-78,36	24	8:92	64		
4	1•2.6HNTf ₂	0,24	71	10:90	80		
5	$1 \cdot 2.6 HNT f_2$	-20, 48	64	8:92	85		

^a 4a (2 equiv) and 3a (1 mmol, 1 equiv) were used in EtNO₂ (0.3 mL). ^b The ee value of anti-5aa was determined by chiral HPLC.

reactivity. However, the cycloaddition of a 1,1-disubstituted styrene derivative, such as 4g with 3a, gave 5ag with 80% ee (entry 12). The absolute and relative stereochemistry of 5ge, which was obtained in the experiment (entry 10) shown in Table 3, was also determined to be a (1S,2S,3R)-anti configuration based on an X-ray crystal analysis (see Supporting Information).

A possible stepwise mechanism that accounts for the observed absolute and relative stereochemistries of cycloadducts 5aa and 5gd is shown in Scheme 1 and Figure 1.8 Initially, the enantioselective Michael addition of alkenes to a (Z)-iminium intermediate,⁹ which would be generated from 3 and 1.2.6HNTf₂, should occur through enantiofacial approach between the re face of electron-rich alkenes

Table 2. Enantioselective [2 + 2] Cycloaddition of 4a with $3-5^a$

entry	3 , R ²	time (h)	5 , yield (%)	syn:anti	ee ^b (%)
1	3a , Ph	7	5aa , 74	14:86	73
2	3b , <i>c</i> -C ₆ H ₁₁	6	5ba, 72	13:87	78
3	3c , <i>p</i> -(MeO)C ₆ H ₄	7	5ca, 69	13:87	75
4	3d, p-FC ₆ H ₄	18	5da, 73	13:87	71
5	3e , 2,6-F ₂ C ₆ H ₃	12	5ea , 80	11:89	84

^{*a*} The reaction of **4a** (2 equiv) with **3** (1 mmol, 1 equiv) was carried out in the presence of **1**•2.6HNTf₂ (10 mol %) in EtNO₂ (0.3 mL) at room temperature. ^{*b*} The ee value of *anti*-**5** was determined by chiral HPLC. (15,3*R*)-*anti*-**5** was the major enantiomer.

Table 3. Enantioselective [2 + 2] Cycloaddition of 4 with $3-5^a$

			conditions	5, yield		ee
entry	4	3	(°C, h)	(%)	syn:anti	$(\%)^{b}$
$1^{c,d}$	Me ₂ C=CH- <i>i</i> -Pr, 4a	3e	-20, 48	5ea , 63	7:93	95
2^{e}	Me ₂ C=CH- <i>i</i> -Bu, 4b	3g ^f	-20,48	5gb , 63	6 : 94	89
$3^{d,e}$	$Me_2C=CH-c-C_6H_{11}$, 4c	3e	0,48	5ec, 89	8:92	82
$4^{e,g}$		3e	-20,48	5ec, 61	9:91	85
5^e	Me ₂ C=CH-t-Bu, 4d	3f ^h	-20,60	5fd , 67	7:93	91
$6^{e,i}$		3g [/]	-20, 30	5gd , 49	7:93	87
7^e	/	3e	0,24	5ee, 63	5:95	82
8^e	$\langle /=\langle$	3f ^h	0,48	5fe, 77	5:95	83
9 ^e	\times	3f ^h	-10,48	5fe, 57	4:96	89
$10^{e,g,i}$, 4 e	$3g^{f}$	-20,72	5ge, 24	4:96	90
	CHEt ₂			-		
$11^{e,i}$		3e	-10, 24	5ef, 37	17:83	87
	∽ ,4f					
$12^{c,d,i,j}$	PhMeC=CH ₂ , 4g	3a	0,6	5ag , 20	$16:84^{k}$	80

^{*a*} Unless otherwise noted, **3** (1.0 mmol, 1.0 equiv) and **4** (1.2 equiv) were used in PrNO₂ (1.0 mL) in the presence of **1**•2.6HNTf₂ (10 mol %). ^{*b*} The e value of *anti-5* was determined by chiral HPLC. ^{*c*} EtNO₂ was used. ^{*d*} **4** (2.0 equiv) was used. ^{*e*} **1**•2.6HNTf₂ (20 mol %) was used. ^{*f*} **3g** (R² = C₆F₅). ^{*g*} PrNO₂ (2.0 mL) was used. ^{*h*} **3f** (R² = 2,4,6-F₃C₆H₂). ^{*i*} 1,1,2,2,3,3-Hexafluoropropane-1,3-disulfonimide was used in place of HNTf₂. ^{*j*} Water (2.0 equiv) was added. ^{*k*} The relative stereochemistry of **5ag** is unknown.

Figure 1. Possible TS 9 and TS 10 for the present [2 + 2] cycloaddition.

and the *si* face of the electron-deficient (*Z*)-iminium intermediate in an extended transition-state assembly (TS) **9**. The (*Z*)-iminium isomer of **9** is expected to be more stabilized by intramolecular hydrogen-bonding interactions between $R^2-C=O$ or *o*-*F* substituents in R^2 and $H-N^+(CH_2CH_2)_2$. Subsequently, the resulting tertiary carbocation intermediate would be intramolecularly cyclized through a folded TS **10**. The high *anti*-selectivity of cycloadducts might also be achieved by an intramolecular hydrogen-bonding interaction in **9** and **10**.

To demonstrate the synthetic utility of cycloadducts **5**, **5ea** was expanded to 2-acyloxycyclopentanone **7ea** by treatment with AlCl₃ (1.2 equiv) through successive 1,2-shifts of a tertiary alkyl group and a hydride (eq 1).¹⁰ On the other hand, **5ge** was expanded to 2-hydroxycyclopentanone **6e** in 95% yield with 64% ds by treatment with $Bu_4NF \cdot 3H_2O$ (2 equiv) through hydrolysis and the subsequent 1,2-shift of a tertiary alkyl group (eq 2). It is expected that **6e** may become a new chiral common intermediate candidate in the

enantioselective total syntheses of 4a-methylhydrofluorene diterpenoids such as (-)-taiwaniquinol B.^{11,12}

In summary, we have described a novel and useful formal [2 + 3] cycloaddition of **4** with **3** by an organocatalytic enantioselective [2 + 2] cycloaddition and subsequent ring expansion to give optically active **6** or **7** with high ee.

Acknowledgment. Financial support for this project was provided by MEXT.KAKENHI(19020021) and the Toray Science Foundation.

Supporting Information Available: Experimental procedures and full characterization of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504, 13079
 (additions and corrections). (b) Sakakura, A.; Suzuki, K.; Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229. (c) Sakakura, A.; Suzuki, K.; Ishihara, K. Adv. Synth. Catal. 2006, 348, 2457.
- (2) For chiral secondary ammonium salt catalysts for the Diels-Alder reaction, see: (a) Ahrendt, K.; Borths, C. J.; MacMillan, D. W. J. Am. Chem. Soc. 2000, 122, 4243. (b) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458.
- (3) For an account article, see: Ishihara, K.; Sakakura, A.; Hatano, M. Synlett 2007, 686.
- (4) For a review, see: Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449.
- (5) For the titanium-catalyzed enantioselective [2 + 2] cycloaddition reaction of acryloyl oxazolidinone derivatives with alkenyl sulfides and alkynyl sulfides (10-30 mol % catalyst loading, 30 to >99% yield, 80 to >98% ee), see: Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. J. Am. Chem. Soc. **1992**, 114, 8869.
- (6) For the copper-catalyzed enantioselective [2 + 2] cycloaddition reaction of 2-methoxycarbonyl-2-cyclopenten-1-one with phenylthioacetylene (20 mol % catalyst loading, 67% yield, 73% ee), see: (a) Ito, H.; Hasegawa, M.; Takenaka, Y.; Kobayashi, T.; Iguchi, K. J. Am. Chem. Soc. 2004, 126, 4520. (b) Takenaka, Y.; Ito, H.; Hasegawa, M.; Iguchi, K. Tetrahedron 2006, 62, 3380. (c) Takenaka, Y.; Ito, H.; Iguchi, K. Tetrahedron 2007, 63, 510.
- (7) For the rhodium-catalyzed enantioselective [2 + 2] cycloaddition reaction of alkynyl esters with norbornene derivatives (5 mol % catalyst loading, 54 to >99% yield, 55–99% ee), see: Shibata, T.; Takami, K.; Kawachi, A. Org. Lett. 2006, 8, 1343.
- (8) The possibility of a concerted [π2s + π2s] cycloaddition and the possibility of a folded transition state for the initial Michael addition step are forbidden by orbital symmetry considerations. The possibility of a concerted [π2s + π2a] pathway is also excluded because of the steric hindrance of substrates.
- (9) It was ascertained by ¹H NMR spectral analysis that a new species was generated from 1•2.6HNTf₂ and 4 in CD₃CN in ca. 10% conversion. However, we could not clearly assign it as an iminium salt intermediate. Therefore, we cannot deny the possibility of chiral Brønsted acid catalysis through hydrogen bonding.
- (10) (a) Davies, H. M. L.; Dai, X. J. Am. Chem. Soc. 2004, 126, 2692. (b) Dai, X.; Davies, H. M. L. Adv. Synth. Catal. 2006, 348, 2449.
- (11) For syntheses of (±)-4a-methylhydrofluorene diterpenoids, see: (a) Fillion, E.; Fishlock, D. J. Am. Chem. Soc. 2005, 127, 13144. (b) Banerjee, M.; Mukhopadhyay, R.; Achari, B.; Banerjee, A. K. J. Org. Chem. 2006, 71, 2787. (c) Liang, G.; Xu, Y.; Seiple, I. B.; Trauner, D. J. Am. Chem. Soc. 2006, 128, 11022.
- (12) For the synthesis of (+)-dichroanone, see: McFadden, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128, 7738.

JA073435W